View Post

Molecular hydrogen modifies free radical-dependent generation of oxidized phospholipid mediators

In In vitro studies by CHESS

The authors previously showed that H2 acts as a novel antioxidant to protect cells against oxidative stress. Subsequently, numerous studies have indicated the potential applications of H2 in therapeutic and preventive medicine. Moreover, H2 regulates various signal transduction pathways and the expression of many genes. However, the primary targets of H2 in the signal transduction pathways are unknown. Here, the …

View Post

Oral and inhalational molecular hydrogen affects signaling pathways and gene expression

In Animal studies, Other studies by CHESS

Molecular hydrogen (H2) is an agent with potential applications in oxidative stress-related and/or inflammatory disorders. H2 is usually administered by inhaling H2-containing air (HCA) or by oral intake of H2-rich water (HRW). Despite mounting evidence, the molecular mechanism underlying the therapeutic effects and the optimal method of H2 administration remain unclear. Here, authors investigated whether H2 affects signaling pathways and …

View Post

Hepatic oxidoreduction-related genes are upregulated by administration of hydrogen water

In Animal studies, Liver by CHESS

The effects of the administration of molecular hydrogen-saturated drinking water (hydrogen water) on hepatic gene expression were investigated in rats. Using DNA microarrays, 548 upregulated and 695 downregulated genes were detected in the liver after 4 weeks of administration of hydrogen water. Gene Ontology analysis revealed that genes for oxidoreduction-related proteins, including hydroxymethylglutaryl CoA reductase, were significantly enriched in the …

View Post

Hydrogen inhibits cytokine-induced LOX-1 gene expression by suppressing NF-κB activation

In In vitro studies by CHESS

H(2) is a therapeutic antioxidant that can reduce oxidative stress. Oxidized low-density lipoprotein, which plays roles in atherosclerosis, may promote endothelial dysfunction by binding the cell-surface receptor LOX-1. LOX-1 expression can be upregulated by various stimuli, including TNF-α. Thus, we aimed to examine whether the upregulation of LOX-1 by different stimuli could be blocked by H(2) in endothelial cells. H(2) …