View Post

Hydrogen as novel antioxidant in sport

In Review papers by CHESS

Molecular hydrogen (H2) is a colorless, tasteless, odorless, and minimal molecule with high flammability. Although H2 has been thought to be an inert gas in living bodies for many years, an animal study reported that inhalation of H2 gas decreased oxidative stress and suppressed brain injury caused by ischemia and reperfusion injury due to its antioxidant action. Since then, the …

View Post

Hydrogen downregulates skeletal muscle damage

In Animal studies, Other studies by CHESS

Physical exercise-induced skeletal muscle damage may be characterized by increased oxidative stress, inflammation, and apoptosis which may be beneficial when exercise is regular, but it is rather harmful when exercise is exhaustive and performed acutely by unaccustomed individuals. Molecular hydrogen (H2) has emerged as a potent antioxidant, anti-inflammatory, and anti-apoptotic agent, but its action on the deleterious effects of acute …

View Post

Hydrogen as exotic performance-enhancing agent

In Review papers by CHESS

Hydrogen gas (H2) has entered the world of experimental therapeutics approximately four and a half decades ago. Over the years, this simple molecule appears to drive more scientific attention, perhaps due to a dualism of H2 affirmative features demonstrated in numerous in vitro, animal and human studies on one side, and still puzzling mechanism(s) of its biological activity on the …

View Post

Hydrogen reduces acute exercise-induced stress

In Animal studies, Other studies by CHESS

Physical exercise induces inflammatory and oxidative markers production in the skeletal muscle and this process is under the control of both endogenous and exogenous modulators. Recently, molecular hydrogen (H2) has been described as a therapeutic gas able to reduced oxidative stress in a number of conditions. However, nothing is known about its putative role in the inflammatory and oxidative status …

View Post

Exercise and hydrogen-rich saline protect from myocardial injury

In Animal studies, Cardiovascular by CHESS

It has been reported that hydrogen-rich saline (HRS) water reduces oxidative stress, and early aerobic exercise (eAE) acts an efficient exercise preconditioning (EP) against cardiac I/R injury. However, whether early aerobic exercise combined with hydrogen-rich saline (eAE-HRS) water can more effectively protect myocardial damage induced by acute myocardial infarction (MI) is still unknown. This study was aimed to evaluate the …