The inhaled general anesthetic isoflurane has been shown to induce caspase-3 activation in vitro and in vivo. The underlying mechanisms and functional consequences of this activity remain unclear. Isoflurane can induce caspase-3 activation by causing accumulation of reactive oxygen species (ROS), mitochondrial dysfunction, and reduction in adenosine triphosphate (ATP) levels. This study aimed to investigate the protective effect of hydrogen, a novel antioxidant, against isoflurane-induced caspase-3 activation and cognitive impairment. H4 human neuroglioma cells overexpressing human amyloid precursor protein were treated with saline or hydrogen-rich saline (HS, 300 μM), with or without 2% isoflurane, for 6 h or 3 h. Western blot analysis, fluorescence assays, and a mitochondrial swelling assay were used to evaluate caspase-3 activation, levels of ROS and ATP, and mitochondrial function. The effect of the interaction of isoflurane (1.4% for 2 h) and HS (5 mL/kg) on cognitive function in mice was also evaluated using a fear conditioning test. The authors found that HS attenuated isoflurane-induced caspase-3 activation. Moreover, HS treatment mitigated isoflurane-induced ROS accumulation,
Li C, Hou L, Chen D, et al. Hydrogen-rich saline attenuates isoflurane-induced caspase-3 activation and cognitive impairment via inhibition of isoflurane-induced oxidative stress, mitochondrial dysfunction, and reduction in ATP levels. Am J Transl Res. 2017 Mar 15;9(3):1162-1172.