The gut-brain axis mediates the interaction pathway between microbiota and opioid addiction. In recent years, many studies have shown that molecular hydrogen has therapeutic and preventive effects on various diseases. This study aimed to investigate whether molecular hydrogen could serve as pharmacological intervention agent to reduce risks of reinstatement of opioid seeking and explore the mechanism of gut microbiota base …
Molecular hydrogen and sperm viability
The effect of molecular hydrogen during cryopreservation on the ultrastructures of bovine sperm cells has been studied. The study was performed on the sperm production of black-and-white Holstein bulls. The sperm was diluted with a sterile BioXcell medium (France). To study the effect of molecular hydrogen on the sperm cells of bulls, “BioXcell” diluted with hydrogen water was used. Native …
Hydrogen inhalation mitigates memory loss
The central nervous system (CNS) is one of the first physiological systems to be affected in sepsis. During the exacerbated systemic inflammatory response at the early stage of sepsis, circulatory inflammatory mediators are able to reach the CNS leading to neuroinflammation and, consequently, long-term impairment in learning and memory formation is observed. The acute treatment with molecular hydrogen (H2) exerts …
Pharmacokinetics of hydrogen inhalation
The benefits of inhaling hydrogen gas (H2) have been widely reported but its pharmacokinetics have not yet been sufficiently analyzed. We developed a new experimental system in pigs to closely evaluate the process by which H2 is absorbed in the lungs, enters the bloodstream, and is distributed, metabolized, and excreted. We inserted and secured catheters into the carotid artery (CA), …
Proteomics of hydrogen inhalation in brain injury
Sepsis encephalopathy (SAE) has a high incidence and mortality rate in patients with sepsis; however, there is currently no effective treatment. Our previous studies have reported that 2% hydrogen (H2) gas inhalation had a protective effect on sepsis and SAE; however, the specific mechanism have not been fully elucidated. In the current study, male Institute of Cancer Research mice were …
Hydrogen in lung transplantation
Molecular hydrogen (H2) has protective effects against ischemia-reperfusion injury in various organs. Because they are easier to transport and safer to use than inhaled H2, H2-rich solutions are suitable for organ preservation. In this study, we examined the protective effects of an H2-rich solution for lung preservation in a canine left lung transplantation (LTx) model. Ten beagles underwent orthotopic left …
Hydrogen gas improves delayed brain injury
Molecular hydrogen (H2) protect neurons against reactive oxygen species and ameliorates early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study investigated the effect of H2 on delayed brain injury (DBI) using the rat SAH + unilateral common carotid artery occlusion (UCCAO) model with the endovascular perforation method. 1.3% H2 gas (1.3% hydrogen premixed with 30% oxygen and balanced nitrogen) …
Hydrogen gas inhalation attenuates endothelial glycocalyx damage
Hydrogen gas (H2) inhalation during hemorrhage stabilizes post-resuscitation hemodynamics, improving short-term survival in a rat hemorrhagic shock and resuscitation (HS/R) model. However, the underlying molecular mechanism of H2 in HS/R is unclear. Endothelial glycocalyx (EG) damage causes hemodynamic failure associated with HS/R. In this study, we tested the hypothesis that H2 alleviates oxidative stress by suppressing xanthine oxidoreductase (XOR) and/or …
Hydrogen inhalation inhibits neuroinflammation
Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide. To date, therapies to treat any forms of TBI are still limited. Recent studies have demonstrated the potential neuroprotective effects of molecular hydrogen on TBI. Although it has been demonstrated that hydrogen inhalation (HI) for about 5 hrs immediately after TBI has a beneficial effect on brain …
Hydrogen inhalation in NAFLD
Hydrogen exhibits therapeutic and preventive effects against various diseases. The present study investigated the potential protective effect and dose‑dependent manner of hydrogen inhalation on high fat and fructose diet (HFFD)‑induced nonalcoholic fatty liver disease (NAFLD) in Sprague‑Dawley rats. Rats were randomly divided into four groups: i) Control group, regular diet/air inhalation; ii) model group, HFFD/air inhalation; iii) low hydrogen group, …