The protective effects of 2%-4% hydrogen gas in delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) have been previously reported. This study aimed to assess the neuroprotective effects of high concentration hydrogen (HCH) on DEACMP. A total of 36 male Sprague-Dawley rats were divided into 3 groups. In the DEACMP group, rats were exposed to CO to induce CO poisoning; …
Hydrogen alleviates obliterative airway disease
Bronchiolitis obliterans syndrome arising from chronic airway inflammation is a leading cause of death following lung transplantation. Several studies have suggested that inhaled hydrogen can protect lung grafts from ischemia-reperfusion injury via anti-inflammatory and -oxidative mechanisms. We investigated whether molecular hydrogen-saturated water can preserve lung allograft function in a heterotopic tracheal allograft mouse model of obliterative airway disease. Obliterative airway …
Hydrogen water for chronic fatigue syndrome
Given the absence of restorative treatments for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), testing of alternative interventions may offer new options to help these debilitated individuals. To explore in an 8-week pilot randomized trial the potential benefit of two non-invasive treatments, hydrogen water (H2) and app-based heart rate variability biofeedback (HRV-BF), for the symptoms and functional limitations in ME/CFS. A three-arm, …
Hydrogen attenuates exercise-induced hippocampal inflammation
Physical exercise-induced inflammation may be beneficial when exercise is regular but it may be harmful when exercise is intense and performed by unaccustomed individuals/rats. Molecular hydrogen (H2) has recently emerged as a powerful anti-inflammatory, antioxidant and anti-apoptotic molecule in a number of pathological conditions, but little is known about its putative role under physiological conditions such as physical exercise. Therefore, …
Hydrogen for brain injury in diabetes
Reactive oxygen species, inflammation, and apoptosis are major contributors to secondary injuries that follow traumatic brain injury (TBI) in diabetic patients. Hydrogen (H2) can selectively neutralize reactive oxygen species and downregulate inflammatory and apoptotic factors. Therefore, we investigated the effects of inhaled high and low concentrations of hydrogen on neurological function after TBI in diabetic rats and the potential mechanism. …
Hydrogen inhalation protects endothelial glycocalyx during hemorrhagic shock
Hydrogen gas (H2) inhalation improved the survival rate of hemorrhagic shock. However, its mechanisms are unknown. We hypothesized that H2 protected the endothelial glycocalyx during hemorrhagic shock and prolonged survival time. 83 Sprague-Dawley rats were anesthetized with isoflurane. The animals were randomly assigned to 5 groups: room air with no shock, 1.2% H2 with no shock, room air with shock …
Hydrogen inhalation for subarachnoid hemorrhage
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease with poor clinical outcome. Nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome serves a key role in inflammatory response, which may lead to endothelial cell injury and blood-brain barrier (BBB) disruption. Hydrogen (H2) is considered a neuroprotective antioxidant. This study was set out to explore whether hydrogen inhalation …
Hydrogen attenuates neuroinflammation
Sepsis-associated encephalopathy (SAE) is the cognitive impairment resulting from sepsis and is associated with increased morbidity and mortality. Hydrogen has emerged as a promising therapeutic agent to alleviate SAE. The mechanism, however, remains unclear. This research aimed to determine whether hydrogen alleviates SAE by regulating microglia polarization and whether it is mediated by the mammalian target of rapamycin (mTOR)-autophagy pathway. …
Hydrogen as novel antioxidant in sport
Molecular hydrogen (H2) is a colorless, tasteless, odorless, and minimal molecule with high flammability. Although H2 has been thought to be an inert gas in living bodies for many years, an animal study reported that inhalation of H2 gas decreased oxidative stress and suppressed brain injury caused by ischemia and reperfusion injury due to its antioxidant action. Since then, the …
Potential of hydrogen in Alzheimer’s Disease
Alzheimer’s disease (AD) is a complex neurodegenerative disorder, with amyloid-beta (Aβ) aggregation playing a key role in its pathogenesis. Aβ-induced oxidative stress leads to neuronal damage, mitochondrial dysfunction, and apoptosis, making antioxidative strategies promising for AD treatment. This study investigates the effects of hydrogen-rich water (HRW) in a zebrafish AD model. Zebrafish were exposed to aluminum chloride to induce AD-like …